Excellence Delivered As Promised

The City College Of New York Grove School of Engineering

Civil Engineering Department

Mechanics of Deformable Bodies

New Jersey Transit Authority Beam Design Project

Applicant:

Aydin Hasan Pekoz, PhD, PE, LEED AP Gannett Fleming Engineers and Architects, PC

Group Members: Josue Criollo

Ahmed Heiba Bryan Gonzales

Table of Content:

Abstract 2	
2.1 Flexural Design	.2
Calculations for Beam 1	5
Calculations for beam 27-8	3
Calculations for beam 39-1	10
Calculations for beam 411-	-12
2.2 Revising Flexural Design	-15
Calculations for beam 313	
Calculations for beam 415	
2.3 Revise Flexural Design for Lightest W Beams17	-19
Calculations for beam 317	/
Calculations for beam 419)
2.4 Design Calculation 21	-27
Calculations for B/4 21	-23
Calculations for D/4	5-27
2.5 Determining Minimum Size of Sqr Footing	€
2.6 Investigation of added Equipment31	L-34
2.7 Expectations if Composite Action is to be assumed	

Abstract

Our company has been hired by the New Jersey Transit Authority to provide engineering services for their new building project which is located in Borough of Bay Head, Ocean County, NJ. The following report contains calculations regarding the design of specific portions of the New Jersey Transit Authority's new Substation Service Building design project.

As specified by the client, the flexural design, maximum deflection limit, revised flexural design, lightest W-shaped column, max footing size and revised calculations for all portions of the design are included. As per the request of the client, we have also considered the inclusion of a generator on the roof in our calculations. Explanations are also included along with the calculations in the report so that the client can have a better understanding of the design project.

This report is the next step to the 30% design package submitted and fulfills all of the client's requirements. Our engineers went through all of the questions and have provided answers with detailed analysis and design calculations.

)	2.1) Flexural Design Calculations Beam 1	
	Known: For lightest V-Shapes on 1st floor. A The factor of Safety= 2.0 - Dult Dall.	
	#USE "12 Floor Drawings" (S-102) for Bearsd and Z #USE "Roof Drawings" (S-104) for Bearsd and 4	
	- Location of Beam 1: Electrical Room. (See figure 1) - Based on Beam Type table: Rolled Shapes: ASTM A922 -> Stress: Oy = 50000 psi	
	- knowing total load; by USINg General Notes (5-001)- • Design loads for electrical room: Dead load = 75 $\frac{15}{F+2}$] 175 $\frac{15}{F+2}$ $L_{7ot} = L_D + L_L$ Load total = (175 $\frac{15}{F+2}$) (1F+) ² = 1.2152 ps:	
	• The weight of the concrete itset: If f of concrete is = $\left(150 \frac{16}{ft^3}\right) \left(\frac{1}{12}\ln^3\right) = 0.08680 \frac{15}{10^3}$ then, the weight for slab with 6° thickness:	
-	$(0.08680 \frac{16}{103})(6\mu) = 0.52083 \frac{16}{102}$ Ltot = 1.2152 $\frac{15}{102}$ and Lself = 0.52083 $\frac{16}{102}$ - Distributed Load = W= Ltot + Lsoif = (Ltot + Lself) (Length of section) at B1	
	• See figure 1 for more defails: length of section for B1: $11-4^{2} = 136^{2}$ • $W = (1.2152 \pm 0.5208) \frac{15}{102} (136^{16}) = 236 \cdot 100 \frac{15}{10.5} = 1256^{2}$ - Allowable stress: since $50F = 2.0 = 0.014 \rightarrow 0.000 \text{ psi} = 25 \text{ ksi}$	
	0q11- 2.0	

.

21) Flexual Design Calculations for M-V diagrams Beam 1
- Since our W is Distributed along the Beam (B1). (See Figure 2)
EBD:
$$\frac{236,100}{4}$$
 $\frac{10}{4}$ $\frac{10}{4}$ $\frac{10}{4}$ $\frac{100}{4}$ $\frac{100}{$

Table 1.1-	- Beun Options.		
Pesinnation 4	Ix (114) 5x (1173)	alin	
W8 × 48	184 43.2	8.5	
WIDX 39	209 42.1	9.92	
10/12×35	7.85 45.6	12.5	
	7.91 42.0	12 4	
		15.0	

Begm Z.

$$\begin{split} & & & \\$$

F	-19		0	<		+	1	na	d	D	15	+	11	J.	-10	2	,	or		B	ec	in		L																	
-				-	1						1																														_
						_					- (0.0		14			_			_				-	_			+	_	_		-	_	-	_		-	-	+	
+	_	_	_	T		+	_		-	2	50	• •	01	2	-	1	h		-	+	-			-	+	-		-	+	-		-	-	-	+			-	-	+	-
+	-		_	V		V		1	1	-	V		(1	+	J	1	1		+	J	1	-		1	5	-		t				-		-	-			-		
+				7	1		/	/		X	1		/	1	1		/		1		/	/																			
			4	A				-	_													19	71		_				-					-	+		-	-	-	+	_
-	-	_	/	1	-	+			1	-	-	-	1	-	+		0	11	-	+		1.	1		-		-		+	-	-		+	-				+	+	+	
+	+	_				+	18	31			-			-	+	1	8		-										+		_		1								
																							-									1									
	F	19	u r	e	6			Sh	e	21	ſ	\mathcal{I}	aj	10	21	m	1	61	1	30	eu	m	2	2.					+			_	-	-	+				-		
_	-		_			-		1		-	-		-	-	-	-	_		-	-	_	r.			+	-				_	-	-	+	+	+	1	1	-	-	+	-
11	(1)).		5	2=	34	1.1	17.	-	-			-	-	-				-	-									+				-								
							X		1	6																															
					(+	-)				~	24	to								_						5	to	a		of	-			_	_		-	-	-	+	
_	_		_	_	-	_			_	+	_	SL.	Ser	V		-		-		-			e		-		8	5	4	68	.2	15		+	+		-	+	+	+	-
-	+				-	+	_		-	+	-	_	1		Y	e		-		(-)			-					1	_					- 2			+	1		-
	+	_			t					T			1																												
								5					1			_									/)			_			_	_	_	_		_	-	-	_	_
4	27	54.	115		-	_	t	81	11	-	_	0		-	-	_	-	-	-	_			-	-	_		-		+			-	+	+	-		-	+	+	-	-
+	-	_		-	+	+			-	+	-	-		-	-	-		-	+	+				-																	_
	1	-19	J10	-	2	:		M	01	ne	'n	t	[5,	q	51	a	~	(af	-	Be	ar	~	2	2.															
					1										-	5												_					+	-	_		-	_	-	+	
f I	1			3	86	74	136	.0.	5	+	_			-	-		_	-	+	+	_		-	+				-	+	-		-	+	+	-	_	-	+	+	+	-
U	5.1	h		\vdash	+					+	-			1	-	_					-		-	+	-				1									+	1		
							/	1		1.	-		-	4										-							-									-	
					X					(†	-)						(+	2											1	-			-		_		-	+	+	_	_
_	_			K	-	-		-	+	+	_		-	+	-	_	-	+	+	-	-		1	0	_		-	+	+		-	+	+	+	_		-	+	+	+	-
-	-	-		+	+	_		-	-	+	_			+	+			-				-	t									+	+				1	-			_
					1																																				
																			-		_																-	-	-	-	
					-			_	-	-		_	-	+		_		-	-	_			-	+	_		-	+	-		-	-	+	-		_	+	+	+	-	_
_		7	1	10	-		1	-	R	er	i luc	~	2	1	. , (0	5	-	-				+	+	_		-	+			-					-	-	+			-
		0	10	E	+		-				1.	1			1		-	•								B	1														
				Re	35	nu	10	a	#			I.x	. (in	1)	-		5	X	()	n ³)	1		-	d	1	1	-	Automatica	-							_			_
				6	J	4	Χ	6	6			28	33	0				1	50	1			1	_		1	23	1	F		-	_	-		_	-	+	+	+		-
_			-	V	N	16	X	8	0	+	-	13	0	2	_			1	55	7		-	1	-		1	6	TI	5		-	-	-				-		-		-
			-	- V	V	14	X	4	-	-	_	1 1	1	-	-			1	2	1	-	-	+	-		1	1		0			-	-	-		-	+	-	-	-	_

S

$$Total load = 0.4514 \frac{16}{142}$$

$$Concrek Density = 150 \frac{16}{4}$$

$$Total load = 0.4514 \frac{150}{142}$$

$$Concrek Density = 150 \frac{16}{4}$$

$$Total load = 25 ksi$$

$$O iskribuk d loads:$$

$$w_{1} = \left(0.4514\right)\left(100\right) = 45.139 \frac{16}{17}$$

$$w_{2} = \left(170 \frac{15}{16}\right)\left(\frac{145}{172}\right)\left(\frac{5}{10}\right)\left(\frac{100}{10} \frac{1}{10}\right) = 52.0833 \frac{16}{10}$$

$$w = w_{1} + w_{2} = 45.139 + 52.0835 = 97.22 \frac{16}{10}$$

$$w = \frac{12}{12} + \frac{12}{12} + \frac{12}{12}$$

$$R_{1} = 20(10.6 \frac{16}{10})$$

$$R_{1} = 20(10.6 \frac{16}{10})$$

$$R_{1} = 20(10.6 \frac{16}{10})$$

$$R_{1} = 20(10.6 \frac{16}{10})$$

$$R_{1} = \frac{10600}{2} = 10305.52 \frac{16}{10}$$

$$R_{1} = \frac{10600}{2} \frac{1000}{10}$$

$$R_{1} = \frac{10000}{2} \frac{1000}{10}$$

$$R_{1} = \frac{10000}{2} \frac{1000}{10}$$

$$R_{1} = \frac{54(181.91}{25000} = 21.84 \frac{100}{10}$$

2.2) Revise Flexoral Design. Colulations

6

Beam. 3.

Live
$$10nd = (40\frac{10}{4t^2})(\frac{14t^2}{14t^2})(136in) = 37.7816/in$$

 $\frac{L}{360} = \frac{362}{360} = 1.0056$
 $5nex = \frac{5wL^{9}}{359EI}$
() $W12X72$
 $5nex = \frac{5(37.75)(362)^{9}}{(3584)(27x10^{6})(597)} = 0.48821.0056$ Pass
() $W16x57$
 $5nex = \frac{5(37.75)(362)^{9}}{(384)(29x10^{6})(758)} = 0.3843 < 1.0056$ Pass
() $W16x50$
 $5mex = \frac{5(37.75)(362)^{9}}{(3594)(29x10^{6})(758)} = 0.3643 < 1.0056$ Pass
() $W16x50$
 $5mex = \frac{5(37.75)(362)^{9}}{(3594)(29x10^{6})(758)} = 0.3643 < 1.0056$ Pass
() $W16x50$
 $5mex = \frac{5(37.75)(362)^{9}}{(3594)(29x10^{6})(722)} = 0.3643 < 1.0056$ Pass
() $W14x68$
 $5mex = \frac{5(37.75)(362)^{9}}{(3594)(29x10^{6})(722)} = 0.4034 < 1.0056$ Pass

23) Reuse Flewral Design. Calculations For hydrot Work Board Beam 3.
Arwe use our previous tables. (table 3.1).
83

$$\frac{1}{A} = 16 \Rightarrow d = \frac{1}{16} = \frac{362}{16} = 22.625 \text{ in}$$

1) W12x72
 $d = 12.3 < 22.625 \text{ fmil}$
2) W16x72
 $d = 18 < 22.625 \text{ fmil}$
3) W18x50
 $d = 18 < 22.625 \text{ fmil}$
3) W18x50
 $d = 18 < 22.625 \text{ fmil}$
3) W18x68
 $d = 14 < 22.625 \text{ fmil}$
New choice : W24x68
 $5_{\text{Max}} = \frac{5(37.78)(362)^{\text{Y}}}{(384)(4x16)(1836)} = 0.1592 < 1.005 \text{ fmis}}$
 $d = 23.7 7 22.625 \text{ fmis}$

(8)

(a) 23)Rose Pleand Design Calculations for lighted Wheat Beam 4

$$D Use table 4.1$$
 with "d" values.

 $\frac{B4}{L} = 16 \Rightarrow d = \frac{L}{16} = \frac{212}{16} = 13.25$ in
 $d = 13.7 > 13.25$ Pass
(c) W14 x L2
 $d = 13.7 > 13.25$ Pass
(c) W12 x L2
 $d = 12.3 < 13.25$ fail
(c) W10 x 22
 $d = 10.7 < 13.25$ fail
(c) W8 x 28
 $d = 8.06 < 13.25$ Pass

(1) Z.4 Design Calculations Calculation for lightest W-column B/4 column.

2.4) Design Culculations

12

Calculation for lightest W-colm

P/4

$$P_{1} = 27021.056$$

$$P_{2} = 2777.815$$

$$P - P_{1} + P_{2} = 2679914$$

$$P_1 = 42735.97 \, 16$$

 $P_2 = \{0682.8 \, 16$
 $P = P_1 + P_2 = 53418.8 \, 16$

$$P_{1} = 2|368|b$$

$$P_{2} = |0682.8|b$$

$$P = P_{1} + P_{2} = 32050,8|b$$

P = 1/2 268.516

2.5) Determine min size of 18" thick syr footings.

Bly and Dly columns.

$$\begin{aligned} \sigma_{an} &= \frac{7000}{2} = 3500 \frac{16}{44^{2}} \left(\frac{1}{14}\right) = 24.51 \text{ psi} \\ \sigma_{c} &= (18^{n}) \left(15.16/h^{3}\right) \left(\frac{163^{3}}{125.6^{3}}\right) = 0.156 \text{ Psi} \\ P &= 42.736.6 \text{ lb} \\ \sigma_{an} &= \sigma_{c} + \frac{P}{A} = 24.51 = 0.156 + \frac{427.36.4}{A} \\ \frac{1841}{42} \\ \frac{42.736.6}{A} = 24.15 \Rightarrow A = 1769.36 \text{ in}^{2} \\ S &= \sqrt{1769.36} = 42.06 \text{ in} \approx \frac{42.16}{24.51} \\ S &= \sqrt{1769.36} = 42.06 \text{ in} \approx \frac{42.16}{24.51} \\ S &= \sqrt{1769.36} = 42.06 \text{ in} \approx \frac{42.16}{24.51} \\ S &= \sqrt{14618.2} = 67.95 \text{ in} \approx \frac{68.16}{24.51} \end{aligned}$$

2.6 Investigation of impact Calculations.

- New Request: 250 psf on roof by adding a new generator

$$\sum MA = (66, 669 lb) (96.51n) + (23935 lb) (0.75) + Re a Re +4.519 lb.$$

$$\sum Fy = Re + RA - (66, 669 lb) - (23935 lb) = a Re + 55.969 lb$$

$$Wt = 4001 weight = 236.096 lb/m$$

$$Wa = 132.7 lb/m$$

$$Smin = \frac{4.254.725 lb.in}{123.690 lb} = 170.191 m^{2}$$

$$\sum Tre'_{a} = \frac{5 w_{0} t^{4}}{10^{2}} + \frac{w_{1} t}{24EJt} (a^{2}4(2a^{2} - 2ax^{2} 3ta + tx^{3}))$$

$$L = 101 m.$$

$$When, \frac{dt}{dx} = 0, \quad x = 166.4 lm.$$

$$Ive lost definition$$

$$total = S = \frac{5 w_{0} t^{4}}{10} + \frac{w_{1} (9.79 \times t^{4})}{24EJt}$$

$$Ive = S = \frac{5 w_{0} t^{4}}{10} = \frac{170.191 m}{10}$$

$$So the lighter beams vertre gring to test are?$$

$$W = 10716$$

$$W = 27x 64$$

2.6) Investigation of inpact Calculations.

T	Ót		C	der	th	(2	0	11	f	5VC		_	13	8	12	11	0								-								
				1																														
			M	11	(158	8,12	111	b)	(12	in	=	1	8	97.	46	8.	4	b.	ln.														
					1																													
				1. A.	SV	-	1	89	7	461	8 4	- 12	. ir	2		_	75	9	in ³															
					1			2:	1.06	0	1b/	102																						
										-																								
(5+	0	1	et	2	The second	4	6	be		0x	00	in	1																				
-		1	-	21	24	-				-	- Con	211																					-	
+	1	-	1	d -	0	V 1-	72																											
+	+	_	1	J	11		15			-																								
+	+	_	1	¥ KI	22	~																												
-	+	-	-	<u></u>	20	1		-							-																			
1	_\	,			V			-			1	12	~7																					
1	21				0	DL -	-	2	p, c	100		<u>D 11</u>	1)-					1		-						-	_	_						-
-	+	_1				-																						_						-
+		VY:	30	X	13	-	1	-		2		<u> </u>		1=	0		-	0	_			-	T		0	20	1.0	1	-	T ~~		0.0		4
+	-		_			-	Az	4	+1 11	n ^e		4	11	10.	21	n	-	U	X =	13	010	1	+	y =	02	30	1D	T	-	LA-		32	11)	-
+	-		0		1.		. ·	1		1					h				17.	200	7.1	10	11			1	G	-	1	-				-
+	-	_	8-		1	98	121	D	+		129	74	68.	42	15	.11		+	[[]]	59	14	DO	411	0.	0	13	0	1)	$\left(\right)$	-				-
+	_	_				51.0	Dir	2	/	1		82.	80	in	4		/		7			2.	10	10	4				-	-				-
-	_	_					-	_																		- (6					_		-
_	_						-			δ.	-	30,	40	2,	5	ps	ī	2	2	5,	06	0	ps	Î		1	10	II.		-				-
_	_						_	_							_													-		-				-
		W	14	114	3		_	_		-								-											-	-				-
-	_					A	=	42.	7 1	02	-	C¥	7)	7, 4	íŋ	,	C	X.=	7,7	61	2	,	Iy.	2	1710) in	4,		×=	6	77	0	-	-
_									1							,				_	1									-				
			8 =	-	():	58,	121	10			185	74	68.	41	5 lb	(7.9	10	$\left \right\rangle$	+		89	174	62	412	0-1	0	(7.	72	0				
					<u>`</u>	42	7 11	2	1				17	10	în ²	-			1		/			6	77	104			-	1				-
																					-													-
			8	-	3	33,	63	35,	7	05		> 2	5,	06	0	P	51			t	oil													
																				-	-													
		W	33	X2	01																						-							
						A	=	59	2.2	10	-	Cy	=	16.	85	10		CX		1,25	in	ļ, .	LY	-	74	35	104	ŧ,	Ix	=1	460	5 11	74	
																							· ·				-			_				
			8:	-	15	8,	12	16		+	(1	87-	168	4	b.î	n)	(16	.18	Sir		-			147	46	9.4	1 11	D. 1	(\mathbf{b})	(7.	85	10		L
					5	9,	2	10	2				7	44	m	1									1	1.2	301	P I	n	1			1	
																						-	-											
			8	11		20	15	5. 4	14	0	51	4	1	2	5 (Þ	p:	57		(po	155											
										ſ								ľ				-	-											
		-		V	3	3 x	0	0	1	-																								
	Fr	at	0																												-			
-	14	01	-	- 7					-																									
-		R	12		Ĩ=	r	ot	f	$\frac{1}{2}$	pr.	A	h	1	~	en	bre	to	-	-										-	1				T
	_	D	11		5r	11	2	9	1	01	0	9	1	90	M	1	10												-	1				Γ
-		U	T	K	þ.		-	10	-		A	-	7	51		75	P	2							-				1	1				ſ
+				1		P	0	12		-		-		20		1			-				/	-						1				T
-		-	-	-		-		C		V	71	0	-12	20	2	-	Q.	ZZ	6	0		1	p	< 1	n			-	-	1				t
+	_		-	-	-	-	-	-	-	Y	11.	Ο,	10	111		-				1 1	-	-	K			ł		-	-	1	-		-	F
				1		1	1	1	1	1	1	1	1	1		1	1	1	1	1 C	1	L	1	-	1	1	1	1	1	1	1	1	1 million 1	1.

2.7 – Composite Action

As stated within the instructions of the project, we are to assume all beams are simply supported, steel has elasto-plastic stress-strain characteristics, ignore any lateral load, and ignore any composite action between the concrete slabs and steel beams. However, in a more realistic approach to the design project where the concrete slabs and beams would be connected (by bolts, etc) then you would have to take composite action into consideration.

If the two materials were in composite action, it would result in an overall stronger member because materials that are in composite action are considered as one material. Composite action increases the strength of the beams which increases the yielding stress and allowable stress.

If the member is stronger, it means that it can support a greater allowable load. This greater allowable load would result in a smaller sectional modulus (compared to the one calculated in the report) because allowable stress and section modulus are inversely proportional. As allowable stress increases, section modulus decreases. With a smaller section modulus, we have more choices for beams to choose from for our design. This allows us to choose a beam that is lighter, more economical and supports a greater load.